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A B S T R A C T

Accurate diagnosis of neurodevelopmental disorders is a challenging task due to the time-consuming cognitive
tests and potential human bias in clinics. To address this challenge, we propose a novel adversarial self-
supervised graph neural network (GNN) based on graph contrastive learning, named A-GCL, for diagnosing
neurodevelopmental disorders using functional magnetic resonance imaging (fMRI) data. Taking advantage of
the success of GNNs in psychiatric disease diagnosis using fMRI, our proposed A-GCL model is expected to
improve the performance of diagnosis and provide more robust results. A-GCL takes graphs constructed from
the fMRI images as input and uses contrastive learning to extract features for classification. The graphs are
constructed with 3 bands of the amplitude of low-frequency fluctuation (ALFF) as node features and Pearson’s
correlation coefficients (PCC) of the average fMRI time series in different brain regions as edge weights. The
contrastive learning creates an edge-dropped graph from a trainable Bernoulli mask to extract features that
are invariant to small variations of the graph. Experiment results on three datasets — Autism Brain Imaging
Data Exchange (ABIDE) I, ABIDE II, and attention deficit hyperactivity disorder (ADHD) — with 3 atlases
— AAL1, AAL3, Shen268 — demonstrate the superiority and generalizability of A-GCL compared to the other
GNN-based models. Extensive ablation studies verify the robustness of the proposed approach to atlas selection
and model variation. Explanatory results reveal key functional connections and brain regions associated with
neurodevelopmental disorders.
1. Introduction

As the brain functional connectivity (FC) extracted from resting-
state functional Magnetic Resonance Imaging (rs-fMRI) could reveal
abnormal brain functional connections, it has been widely utilized in
diagnosis of neurodevelopmental disorders, such as autism spectrum
disorder (ASD) and attention deficit hyperactivity disorder (ADHD) (Ca-
nario et al., 2021). Currently, the diagnosis of these psychiatric diseases
mainly relies on a subjective evaluation of abnormal behaviors by
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clinical experts (Hull et al., 2017). These cognitive and psychiatric
assessments may contain intra- and inter-observer variability (Di and
Biswal, 2020).

Functional magnetic resonance imaging (fMRI) provides a non-
invasive way to observe cognitive and affective processes by measuring
the FC between brain regions via blood oxygen level-dependent (BOLD)
signals that dynamically reveal the change of brain functional connec-
tions (Chen et al., 2017; Chong et al., 2019). Since fMRI data serve as
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quantitative measures of brain functions, they may be used for accurate
diagnosis while avoiding observer-related variability. Furthermore, by
investigating the differences in fMRI between patients and normal
controls (NC), they may reveal disease-specific changes within the
brain (Canario et al., 2021).

1.1. Related work

Recently, computer-aided diagnosis (CAD) using rs-fMRI data has
received increasing interest in the community (Bessadok et al., 2022).
The main strategies include machine learning or deep learning-based
methods, such as support vector machine (SVM) (Liu et al., 2020),
random forest (RF) (Cordova et al., 2020), multilayer perceptron (MLP)
(Hossain et al., 2021; Eslami and Saeed, 2019), convolutional neu-
ral networks (CNNs) (Heinsfeld et al., 2018), and convolution-based
autoencoder (Almuqhim and Saeed, 2021). For example, Wang et al.
conducted the classification by features derived from class-shared and
class-specific decomposition (Wang et al., 2022a). Based on features
extracted from fMRI data, several deep learning-based studies have
been reported (Eslami et al., 2019; Heinsfeld et al., 2018; Yao et al.,
2019; Kam et al., 2017; Parisot, 2018; Kazi et al., 2019; Chen et al.,
2022; Jiang et al., 2020). Among them, graph neural networks (GNNs)
have become an attractive framework for modeling brain networks due
to their powerful graph embedding capabilities (Parisot, 2018; Kazi
et al., 2019; Chen et al., 2022; Jiang et al., 2020).

In general, these GNN-based models can be divided into two cate-
gories: graph classification and node classification. Graph classification
uses GNN as a nonlinear function that takes a graph from an fMRI
image as input and outputs a class label. For example, BrainGB provides
a standard pipeline including node feature construction, message pass-
ing, and graph pooling for brain network analysis (Cui et al., 2022a).
BrainGNN (Li et al., 2021) leverages pooling regularization to extract
the graph-level representation. A globally shared mask was leveraged
to enhance the rs-fMRI classification capability of GNN backbones,
achieving promising results among several datasets (Cui et al., 2022b).
Pooling regularized GNN (Li et al., 2020) used an edge pooling strat-
egy to remove some edges during the message passing process. Kim
et al. proposed a spatio-temporal attention GNN (Kim et al., 2021),
which combined GNN and Transformer to enhance the representation
capability. Chen et al. conducted graph classification based on a node-
edge graph attention network (NEGAT) (Chen et al., 2022). NEGAT
combines structural magnetic resonance imaging (sMRI) data and rs-
fMRI data to construct the graph. Inception-GCN (Kazi et al., 2019)
utilized a receptive field-aware graph convolutional network to predict
the disease.

On the other hand, node classification combines all the data to
form a single population graph where each node is an instance that
corresponds to an fMRI image and needs to be classified. For example,
Cao et al. introduced non-imaging data – site, gender, IQ, age – into
edge weight calculation (Cao et al., 2021), followed by 16 residual GNN
layers for node classification. Hi-GCN (Jiang et al., 2020) leveraged a
hierarchical graph convolutional network (GCN) to classify the graph
representations embedded as node features. Zhou et al. proposed a
graph-in-graph network (Zhou and Zhang, 2021), leveraging features
extracted from a GCN along with non-imaging data to create the
population graph. Zhang et al. constructed a local-to-global GNN for
brain disorder classification using rs-fMRI, which increased the number
of nodes in the population graph by applying different atlases (Zhang
et al., 2022). Then, the nodes are classified by semi-supervised learning
using a GCN layer.

With the advent of contrastive learning that achieved promising
performance in natural image classification (He et al., 2020), graph
contrastive learning (GCL) (Sun et al., 2021) has emerged as an effective
approach to cope with rs-fMRI data. For each graph, by treating an aug-
mented version of this graph as a positive sample and the other graphs
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as negative samples, GCL tries to learn representations that are close to
the original graph in the embedding space for positive samples and
far away from the original graph for negative samples. GCL has been
applied in both graph and node classification tasks in rs-fMRI analysis.
Yang et al. studied contrastive learning based pre-training of GNNs for
brain network analysis and provided a few options of contrastive learn-
ing objectives (Yang et al., 2023). Peng et al. proposed graph canonical
correlation analysis for temporal self-supervised learning (GATE) (Peng
et al., 2022) that leveraged sliding windows to build a positive sample
of an fMRI image, followed by semi-supervised learning to conduct
node classification. Wang et al. proposed contrastive graph learning
(CGL) (Wang et al., 2022b) that utilized contrastive learning to create
node features, followed by node classification using a population graph.
The proposed CGL calculated correlations of truncated BOLD signals to
build positive samples. All the aforementioned methods leveraged the
BOLD signals to build positive samples for contrastive learning. Another
way is to take advantage of an additional GNN encoder for contrastive
learning. Similar to the pooling regularized GNN (Li et al., 2020), a
hierarchical signed graph pooling model was proposed to use two edge
pooling strategies to generate features for contrastive learning (Tang
et al., 2022).

Although these GNN models have achieved promising results in
brain disease diagnosis using rs-fMRI, they still suffer from several
problems. First, for node classification, some methods use additional
non-imaging information to construct the population graph (Cao et al.,
2021; Zhou and Zhang, 2021). However, when a new test instance
with non-imaging features emerges, we need to calculate its similarity
to all existing nodes in the graph in order to update the population
graph. Consequently, the weights of the GNN must be updated to
incorporate the new instance. This complexity in the testing process
renders it more intricate compared to traditional graph classification
algorithms. In addition, some instances may have missing non-imaging
information (Bessadok et al., 2022), which hinders its incorporation
into the population graph. Second, for graph classification, most of the
current methods only use the information from the adjacency matrix,
ignoring constructing reasonable node features, leading to unsatisfac-
tory performance. Third, the creation of positive samples in current
self-supervised models may not be ideal. For example, GATE (Peng
et al., 2022) and CGL (Wang et al., 2022b) assumed that a graph
generated from some part of the BOLD signals could be used as the
positive sample. However, the arbitrary truncation of the BOLD signals
might create a graph inferior to that obtained from the complete
signals (Soon et al., 2021; Yan et al., 2020). To solve these problems, we
propose a new GNN framework for robust rs-fMRI analysis to diagnose
neurodevelopmental disorders.

1.2. Contribution

Inspired by graph contrastive learning (Suresh et al., 2021; You
et al., 2020; Xu et al., 2021), we propose an adversarial graph con-
trastive learning (A-GCL) framework to conduct binary classification
based solely on rs-fMRI data. To facilitate clinical applications, we use
graph classification, which means that the rs-fMRI data of one patient
leads to an individual graph. Instead of using traditional construction
of node features (Cui et al., 2022a), three different frequency bands
of the amplitude of low-frequency fluctuation (ALFF) (Yang et al., 2007)
are calculated from the BOLD signals (Bu et al., 2019; Chen et al.,
2023, 2022) and concatenated as the node features. These features
are updated in a message-passing process. Then, the updated features
are transformed to a mask that is employed to conduct adaptive edge
dropping, with probability following a Bernoulli distribution. We call
this mask a Bernoulli mask. The parameters in this process are trained
by a contrastive policy with an adversarial loss (Kim et al., 2020).
Compared with current state-of-the-art (SOTA) methods, A-GCL uses
the original graph and its edge-dropped version for contrastive learning
and feature distillation. The distilled features can be classified by a

linear classifier for disease diagnosis. The remaining edge weights
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after the trained Bernoulli mask can be analyzed as biomarkers for
the disease, similar to the interpretation strategy in mask-guided GNN
which does not use contrastive learning (Cui et al., 2022b).

In contrast to truncating the BOLD signals, we use the complete
BOLD signals to construct a graph and then learn a Bernoulli mask
from this graph to randomly drop edges to generate a positive sample
in contrastive learning. The idea of this Bernoulli mask is motivated by
the success of masked autoencoder (MAE) (He et al., 2022) in vision
tasks. In MAE, some patches of the input image are randomly masked
out, while the remaining unmasked patches are utilized to represent the
entire image. This strategy is based on the assumption that redundant
information exists in the original image, and self-supervised learning
can effectively eliminate such information. Similarly, in our work, we
adopt a similar perspective by assuming the presence of redundant
information within the adjacency matrix of the graph obtained from the
fMRI data. Thus, we aim to leverage contrastive learning to remove this
redundant information and enhance the representation of the graph.

Another notable aspect of our approach is the implementation of a
dynamic memory bank, which enables the collection of diverse negative
sample features. Typically, a memory bank contains negative sample
features from the same batch. However, the performance of contrastive
learning is highly dependent on the number of negative samples (He
et al., 2020). To increase the number of negative samples, one approach
is to combine samples from all the training batches. Nevertheless, such
a practice would lead to too much GPU memory usage. In this work,
we use a queue to store sample features from the same batch as well
as sample features from different batches. The sample features within
the queue are dynamically updated during iterations. This enables us to
augment the diversity of negative samples while effectively managing
the GPU memory overhead.

We validated our proposed method on the Autism Brain Imaging
Data Exchange (ABIDE) I, ABIDE II, and ADHD-200 datasets. Exten-
sive experiments on three different atlases – AAL1, AAL3, Shen268
– show that the A-GCL framework outperforms other SOTA methods
significantly. The major contributions of our work are summarized as
follows:

1 Adversarial contrastive learning with a dynamic memory
bank: A-GCL performs contrastive learning on features extracted
from the original graph and its edge-dropped version based on a
Bernoulli mask. This enables the learned features to be indepen-
dent of the class labels and to genuinely represent an embedding
of the graphs in the Euclidean space. Furthermore, a dynamic
memory bank is implemented to further enhance this feature
extraction process.

2 Multiple datasets and atlases: A-GCL is evaluated on 2 neu-
rodevelopmental diseases, 3 rs-fMRI datasets, with 3 different
atlases. A-GCL achieved the best performance when compared
with other competing models, demonstrating its superiority and
generalizability.

3 Ablation study: Extensive ablation studies including transfer
learning of ABIDE I to ABIDE II, the influence of the embedding
dimension, the GNN encoder, the graph augmentation strategy,
the adversarial training strategy, the edge weights, and node
features, are conducted to verify the robustness of A-GCL.

4 Explanation: Explanatory analyses including visualization of the
Bernoulli mask and important ROIs are performed to identify
brain regions associated to the diseases. These brain regions could
be used as biomarkers in further understanding these diseases
(ASD and ADHD).

2. Method

The framework of our proposed A-GCL is shown in Fig. 1. First,
two kinds of information – an adjacency FC matrix representing edge
3

connections and a set of ALFF node features – are extracted from the p
fMRI data to form a graph. The graph is then fed into the A-GCL
network to produce latent features that will be used for classification.
Finally, the related brain FCs and important regions are analyzed for
interpretation.

2.1. Graph construction

The graph is constructed as shown in Fig. 1(a). Given an atlas,
the fMRI images are parcellated into many ROIs. Each ROI is consid-
ered as a node and the functional connectivity between any pair of
these ROIs is considered as edges to form a graph. In each ROI, the
mean time series is calculated by averaging all the BOLD signals in
the region. The edge weights are calculated by Pearson’s correlation
coefficient between the mean time series of two regions. The node
features are derived from 3 frequency bands of the ALFFs (Slow-5:
0.01–0.027 Hz, Slow-4: 0.027–0.073 Hz, classical: 0.01–0.08 Hz) in
BOLD signals, which are defined as the total power within the low-
frequency range and are calculated from the Fourier transform of the
mean time series (Guo et al., 2017). Note that the effectiveness of ALFFs
as node features has been demonstrated in several previous studies (Bu
et al., 2019; Chen et al., 2023, 2022).

The resulting graph is denoted by 𝐺 = (𝑉 ,𝐴,𝑋,𝐸), where 𝑉 = {𝑣 ∶
𝑣 = 1,… ,𝑀} represents the set of nodes, 𝐴 = [𝑎𝑢𝑤 ∶ 𝑢,𝑤 ∈ 𝑉 ] ∈
{0, 1}𝑀×𝑀 represents the adjacency matrix indicating if there exists an
edge between two nodes (𝑎𝑢𝑤 = 1), 𝑋 = {𝑥𝑣 ∈ R3 ∶ 𝑣 ∈ 𝑉 } represents
the set of node features and 𝐸 = [𝑒𝑢𝑤 ∈ R ∶ 𝑢,𝑤 ∈ 𝑉 ] ∈ R𝑀×𝑀 the
matrix of edge weights, 𝑀 is the number of nodes/ROIs. The adjacency
matrix is initialized with all 1’s. The node features are normalized to
[0, 1] by subtracting the minimum from all the 3 channels and dividing
the result by the difference between the maximum and the minimum.
The edge weights are normalized to [−1, 1] by dividing each weight by
the maximum of the absolute values.

2.2. A-GCL

Our proposed A-GCL includes graph augmentation, random edge
dropping using a Bernoulli mask, weight-shared GNN encoders, and the
loss function.

2.2.1. Graph augmentation
Let 𝐺 = (𝑉 ,𝐴,𝑋,𝐸) represent the graph constructed from the fMRI

data. The graph goes through a graph isomorphism network (GIN) block,
a feature concatenation, and an MLP layer to form an augmented graph
for learning features that are invariant to small variations.

The GIN block consists of 2 layers. Each layer updates the node
features by using a message-passing process. Let the set of neighboring
nodes of a certain 𝑣 ∈ 𝑉 be denoted by 𝑣, the message passing process
proceeds according to

ℎ(𝑘)𝑣 = 𝑔(𝑘)(ℎ(𝑘−1)𝑣 , 𝑓 (𝑘)({(ℎ(𝑘−1)𝑢 , 𝑒𝑢𝑣) ∶ 𝑢 ∈ 𝑣})), 𝑘 = 1, 2

where ℎ(0)𝑣 = 𝑥𝑣, 𝑓 (𝑘) is a function that transforms the neighboring node
features and edge weights to an aggregated vector. 𝑔(𝑘) is a trainable
function that maps the current node representation and the aggregated
vector to a new representation. Here, 𝑓 (𝑘) is the weighted sum of node
features and edge weights, 𝑔(𝑘) is a MLP layer. Thus the message-passing
process is:

ℎ(𝑘)𝑣 = 𝑀𝐿𝑃 (𝑘)(ℎ(𝑘−1)𝑣 +
∑

𝑢∈𝑣

ℎ(𝑘−1)𝑢 𝑒𝑢𝑣).

The above process can be written in a matrix form:

𝐻 (𝑘− 1
2 ) = (𝐼 + 𝐴◦𝐸)𝐻 (𝑘−1),

(𝑘) = BN(𝜎𝑅𝑒𝐿𝑈 (𝐻
(𝑘− 1

2 )𝑊 (𝑘)
1 + 𝟏𝑏(𝑘)1 )𝑊 (𝑘)

2 + 𝟏𝑏(𝑘)2 ),

here 𝐻 (𝑘) is a matrix with rows being {ℎ(𝑘)𝑣 }, ◦ denotes the Hadamard
roduct (element-wise multiplication), 𝟏 is a 𝑀-dimensional vector
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Fig. 1. The overview of our proposed A-GCL. (a) shows the construction of node features and edge weights, including atlas selection, ALFF calculation, Pearson’s correlation
coefficient (PCC) calculation, and the structure of the graph. (b) shows the framework of A-GCL, including random graph augmentation from a trainable Bernoulli mask, a
weight-shared GNN encoder, and a projection head. The purpose of A-GCL is to extract latent feature vectors using contrastive learning.
consisting of all 1’s, 𝑊 (𝑘)
1 ∈ R𝑑(𝑘−1)×𝑑 , 𝑏(𝑘)1 ∈ R1×𝑑 and 𝑊 (𝑘)

2 ∈ R𝑑×𝑑 ,
𝑏(𝑘)2 ∈ R1×𝑑 are trainable parameters with 𝑑(0) = 3 and 𝑑(1) = 𝑑, BN
denotes a batch normalization operation. The GIN block aims to learn a
latent representation of node features �̃�𝑣 = ℎ(2)𝑣 , which are concatenated
to create embedded edge features �̃�𝑢𝑣 = [�̃�𝑢; �̃�𝑣] ∈ R2𝑑 .

The edge features are fed into an MLP layer to generate parameters
of a Bernoulli distribution that is sampled to randomly drop edges. The
MLP layer consists of a linear layer with trainable weights 𝑊3 ∈ R2𝑑×2𝑑 ,
𝑏3 ∈ R1×2𝑑 , a ReLU activation function 𝜎𝑅𝑒𝐿𝑈 , another linear layer with
weights 𝑊 ∈ R2𝑑×1, 𝑏 ∈ R and finally a sigmoid function that converts
4

4 4
the number to the range (0, 1):

𝜇𝑢𝑣 = 𝜎𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝜎𝑅𝑒𝐿𝑈 (�̃�⊤𝑢𝑣𝑊3 + 𝑏3)𝑊4 + 𝑏4).

In this way, the edge features are transformed into a scalar that
corresponds to the parameters of a Bernoulli distribution.

Given the set of parameters {𝜇𝑢𝑣}, an indicator for edge dropping
𝑏𝑢𝑣 is sampled for each edge, i.e. 𝑏𝑢𝑣 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜇𝑢𝑣), where 𝑏𝑢𝑣 = 0
indicates that the edge will be dropped. The matrix [𝑏𝑢𝑣 ∶ 𝑢, 𝑣 ∈ 𝑉 ]
constitutes the binary (0 or 1) Bernoulli mask 𝐵. To enable the gradient
to backpropagate, the sampling process needs to be reparameterized.
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We use the following reparameterization trick (Luo et al., 2020):

𝑏𝑢𝑣 = 𝜎𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ((log
𝜖𝑢𝑣

1 − 𝜖𝑢𝑣
+ log

𝜇𝑢𝑣
1 − 𝜇𝑢𝑣

)∕𝜏),

where 𝜖𝑢𝑣 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1), and 𝜏 denotes a temperature parameter that
controls the smoothness of the reparameterized sampling functions.
The term inside the sigmoid function is positive if 𝜖𝑢𝑣 is in the range
(1−𝜇𝑢𝑣, 1) and negative if it is in the range (0, 1−𝜇𝑢𝑣). Hence, the output
𝑏𝑢𝑣 approaches 1 with probability 𝜇𝑢𝑣. As 𝜏 → 0, 𝑏𝑢𝑣 gets closer to the
sampled binary indicator.

The Bernoulli mask is applied to the adjacency matrix 𝐴 by element-
wise multiplication, hence masks out some edges with 𝑏𝑢𝑣 = 0. Thereby,
the input graph becomes an edge-dropped graph with the same number
of nodes. Denoting the process that creates the matrix of parameters
[𝜇𝑢𝑣] from graph 𝐺 = (𝑉 ,𝐴,𝑋,𝐸) as 𝜇, the whole data augmentation
process can be written as

𝐵 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜇(𝐺)), �̃� = (𝑉 ,𝐴◦𝐵,𝑋,𝐸). (1)

2.2.2. Dynamic memory bank and loss function design
The input graph 𝐺 and the augmented graph �̃� derived above are

input into a graph encoder and a projection head to extract features.
As shown in Fig. 1(b), they go through a weight-shared GIN block
and a weight-shared projection head. The GIN block has the same
architecture as the one in the graph augmentation. After the GIN
block, the graph is converted to a vector by summing up all the node
features. This vector goes through a projection head implemented by
a 2-layer MLP. The MLP has 2 dimension-preserving linear layers with
a ReLU activation function in the middle. Denote the GIN block and
the projection head combined feature extractor by 𝑧, we can get two
feature vectors 𝑧(𝐺), 𝑧(�̃�) ∈ R𝑑 after the projection head.

To train the feature extractor and the parameters in the graph
augmentation process, we use a loss function that forces the two feature
vectors to be close if they are from the same graph and far away if they
are from different graphs. In this way, the trained feature extractor
can keep the most important information while removing excessive
information in the graph. Since the training proceeds in a batch-wise
manner, such a loss is also imposed batch-wisely. Specifically, the loss
is defined by the infoMax principle (Veličković et al., 2018) which we
aim to maximize:

𝐼(𝑧, 𝜇;) = 1
||

∑

𝐺∈
log

exp(sim(𝑧(𝐺), 𝑧(�̃�)))
∑

𝐺′∈∖{𝐺} exp(sim(𝑧(𝐺), 𝑧(�̃�′)))

where the dependence of �̃� (resp. �̃�′) on 𝐺 (resp. 𝐺′) is given in
Eq. (1),  is the set of graphs in a batch, || is its cardinality, sim is
the similarity metric and we use the cosine of the angle between two
input vectors:

sim(𝑧1, 𝑧2) = 𝑧⊤1 𝑧2∕(‖𝑧1‖‖𝑧2‖).

Maximizing 𝐼(𝑧, 𝜇;) could be easily achieved by retaining all the
edges. To force more edges to be dropped in this context, we need a
regularization term to facilitate edge dropping. Such a regularization
term is designed to be the mean of all the 𝜇𝑢𝑣’s

𝑅(𝜇;) = 1
||𝑀2

∑

𝐺∈
𝟏⊤𝜇(𝐺)𝟏,

and we want to minimize 𝑅(𝑓 ;).
To further encourage extracting features that vary smoothly on the

graph manifold, we build a cross-batch memory bank  that stores
features 𝑧(�̃�′) from previous batches.  has a preset length and follows
the first-in-first-out (FIFO) rule. An additional loss function using the
memory bank is maximized:

𝐼(𝑧, 𝜇;,) = 1
||

∑

𝐺∈
log

exp(sim(𝑧(𝐺), 𝑧(�̃�)))
∑

𝑧′∈ exp(sim(𝑧(𝐺), 𝑧′))
.

where the dependence of �̃� on 𝐺 is given in Eq. (1). The memory
bank  is initialized with zeros and updated with the iteration of the
batches.
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Table 1
Demographic information of studied subjects in ABIDE I, ABIDE II, and ADHD. ASD:
autism spectrum disorder, NC: normal control, ADHD: attention deficit hyperactivity
disorder.

Dataset ABIDE I ABIDE II ADHD-200

Information ASD NC ASD NC ADHD NC

Subject 467 520 243 289 215 291

Gender (F/M) 63/404 97/423 40/203 105/184 59/156 158/139

Age 16.5 16.8 13.6 12.6 11.4 12.0
(mean ± std) ±8.3 ±7.7 ±8.4 ±7.4 ±3.0 ±3.3

Finally, with regularization coefficients 𝜆1 and 𝜆2, the objective
unction is defined as

in
𝜇

max
𝑧

𝐼(𝑧, 𝜇;) + 𝜆1𝑅(𝜇;) + 𝜆2𝐼(𝑧, 𝜇;,). (2)

The optimal 𝜇 and 𝑧 are obtained through gradient descent/ascent of
the corresponding parameters.

2.3. Classification and interpretation

The representation ability of the trained latent feature vectors 𝑧(𝐺)
is validated in the diagnosis of ASD or ADHD. Here, a simple linear
classifier, SVM, is used to classify the extracted features. After training
the classifier, we also try to discover brain ROIs closely associated with
the diseases.

Since the extracted latent features are important for interpretation,
we interpret the proposed A-GCL by the trained Bernoulli mask. This
mask leads to an augmented sparse graph which can be interpreted in
two ways. First, the important connections in this sparse graph can be
visualized. Second, the importance score of a node can be calculated
by summing up the elements in a row of 𝐴◦𝐵◦𝐸, as the larger the
summation, the more connections remain after dropping edges. This
importance score can be seen as the degree of connection to diseases
of the corresponding brain region.

2.4. Implementation details

Our model is implemented in PyTorch. All of the algorithms de-
scribed in this paper can be executed on a single GPU. The experiments
are accelerated by two servers with 8 NVIDIA V-100 GPUs and 2
NVIDIA A-6000 GPUs. Our code – including pre-processing (Matlab),
A-GCL training, and evaluation scripts (Python 3.7) – has been released
at https://github.com/qbmizsj/A-GCL. The implementation details are
as follows: The learning rate is set to 0.0005. The embedded dimension
𝑑 is set to 32. The batch size is 32. The temperature 𝜏 is set to 1. The
regularization coefficient 𝜆1 and 𝜆2 are set to 2 and 0.4, respectively.
The length of the memory bank  is set to 256. When applying the
proposed A-GCL to a new fMRI dataset, it is recommended to search the
batch size in {8, 16, 32, 64}, the learning rate of the optimization over
the parameters of 𝜇 in {0.0001, 0.0005, 0.001, 0.005, 0.01}, and the
learning rate of the optimization over the parameters of 𝑧 in {0.0005,
0.001, 0.01}.

3. Results

3.1. Experimental setup

3.1.1. Dataset and preprocessing
We use three rs-fMRI datasets – Autism Brain Imaging Data Ex-

change (ABIDE) I, ABIDE II, and ADHD-200 – which are publicly avail-
able MRI datasets collected from different international imaging sites.
The ground truth labels can be accessed from the phenotypic file when
downloading the datasets. As described in the dataset documentation,
these labels are derived through meticulous diagnostic procedures and

https://github.com/qbmizsj/A-GCL
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Table 2
Results for ASD classification (ASD vs. NC) on ABIDE I and ABIDE II, and those for ADHD classification (ADHD vs. NC) on ADHD-200 using the AAL1 atlas. The results (in %)
were calculated based on 5-fold cross-validation. The training time (trn time) for each epoch (in ‘s’) and the inference time (inf. time) for each sample (in ‘ms’) are also included.
The best result in each category is highlighted in red.

Dataset Method Trn time Inf. time Accuracy AUC Precision Recall F1-score Avg

MLP 7.59 0.75 63.20 ± 4.62 64.03 ± 3.89 64.58 ± 3.25 65.73 ± 2.80 65.15 ± 3.20 64.54 ± 3.55
SVM 2.14 0.04 66.37 ± 3.82 64.08 ± 3.19 62.30 ± 4.83 70.57 ± 2.84 66.18 ± 3.45 65.90 ± 3.63
v-GCN 0.99 0.34 69.40 ± 3.54 70.79 ± 3.12 68.50 ± 2.88 76.07 ± 3.43 72.10 ± 3.09 71.37 ± 3.21
GraphSage 1.04 0.37 71.13 ± 3.45 70.41 ± 3.23 72.44 ± 2.74 73.05 ± 2.91 72.75 ± 2.86 71.96 ± 3.04
GIN 1.06 0.40 70.08 ± 3.69 70.50 ± 3.41 71.19 ± 3.05 73.82 ± 2.90 72.48 ± 2.94 71.61 ± 3.20

ABIDE I HI-GCN 4.58 0.87 70.59 ± 3.36 71.42 ± 2.90 68.47 ± 3.47 73.01 ± 2.85 70.67 ± 3.13 70.83 ± 3.14
AL-NEGAT 6.20 0.52 71.04 ± 3.50 72.40 ± 2.69 75.59 ± 2.80 70.27 ± 3.34 72.83 ± 3.05 72.43 ± 3.08
BrainGNN 9.21 0.27 68.29 ± 3.87 70.72 ± 3.16 66.15 ± 3.14 71.78 ± 3.20 68.85 ± 3.16 69.19 ± 3.31
DGCN 12.79 0.42 73.30 ± 3.02 74.15 ± 3.08 72.06 ± 2.68 73.55 ± 3.19 72.81 ± 2.84 73.17 ± 2.96
GATE 4.55 0.18 73.52 ± 3.16 75.60 ± 2.84 74.36 ± 3.04 75.60 ± 2.84 74.60 ± 3.06 74.74 ± 2.99
A-GCL 2.14 0.20 80.65 ± 2.88 81.42 ± 2.85 80.02 ± 2.94 82.28 ± 3.10 81.14 ± 2.96 81.10 ± 2.95

MLP 7.62 0.74 61.18 ± 5.16 62.85 ± 5.15 62.87 ± 4.12 64.35 ± 3.50 63.60 ± 3.85 62.97 ± 4.36
SVM 2.16 0.04 64.48 ± 4.29 62.81 ± 4.80 60.56 ± 7.28 70.24 ± 5.40 65.04 ± 6.26 64.63 ± 5.61
v-GCN 0.99 0.32 70.05 ± 4.22 71.48 ± 5.26 70.13 ± 3.74 74.28 ± 3.90 72.14 ± 3.87 71.62 ± 4.20
GraphSage 1.06 0.39 71.17 ± 3.85 70.86 ± 3.64 72.35 ± 3.45 73.00 ± 3.40 72.67 ± 3.44 72.01 ± 3.56
GIN 1.08 0.40 68.56 ± 3.90 70.20 ± 4.06 70.46 ± 4.09 72.16 ± 3.84 71.30 ± 3.92 70.54 ± 3.96

ABIDE II HI-GCN 4.65 0.90 70.62 ± 4.19 70.86 ± 3.57 69.10 ± 4.33 71.88 ± 3.17 70.46 ± 3.62 70.58 ± 3.78
AL-NEGAT 6.14 0.58 70.02 ± 4.64 71.40 ± 3.19 73.62 ± 4.14 71.25 ± 5.05 72.42 ± 4.30 71.74 ± 4.26
BrainGNN 8.78 0.26 66.25 ± 6.72 67.48 ± 5.05 69.59 ± 4.61 66.50 ± 3.92 68.01 ± 4.25 67.57 ± 4.91
DGCN 12.46 0.48 72.58 ± 3.38 73.27 ± 3.41 72.31 ± 3.30 73.25 ± 4.61 72.78 ± 3.64 72.84 ± 3.67
GATE 4.50 0.20 72.09 ± 4.50 74.06 ± 4.73 74.18 ± 3.77 73.09 ± 3.45 73.63 ± 3.86 73.41 ± 4.06
A-GCL 2.15 0.18 79.88 ± 3.48 80.04 ± 3.37 79.14 ± 3.24 81.47 ± 4.60 80.29 ± 3.64 80.16 ± 3.67

MLP 8.03 0.87 61.08 ± 5.61 62.83 ± 3.50 62.31 ± 5.37 63.74 ± 4.27 63.01 ± 4.62 62.59 ± 4.67
SVM 3.65 0.06 62.20 ± 4.65 60.74 ± 5.32 60.79 ± 5.30 65.55 ± 4.83 63.08 ± 5.18 62.47 ± 5.06
v-GCN 1.21 0.44 62.85 ± 3.48 64.40 ± 3.41 63.06 ± 4.40 64.73 ± 5.09 63.88 ± 4.85 63.78 ± 4.25
GraphSage 0.88 0.46 62.10 ± 4.42 62.29 ± 4.49 63.68 ± 5.10 65.76 ± 4.72 64.70 ± 4.83 63.71 ± 4.71
GIN 0.81 0.35 60.35 ± 5.96 62.15 ± 3.76 62.48 ± 3.54 62.04 ± 4.13 62.36 ± 3.77 61.88 ± 4.23

ADHD HI-GCN 5.12 0.57 63.30 ± 5.35 63.84 ± 5.17 65.88 ± 4.17 62.37 ± 5.15 64.08 ± 4.50 63.89 ± 4.87
AL-NEGAT 6.68 0.25 64.25 ± 4.24 62.52 ± 4.10 63.55 ± 4.80 66.79 ± 4.36 65.13 ± 4.59 64.45 ± 4.42
BrainGNN 9.04 0.48 62.75 ± 3.69 62.28 ± 5.83 65.08 ± 3.36 60.24 ± 4.12 62.57 ± 3.68 62.58 ± 4.14
DGCN 10.85 0.57 63.38 ± 4.10 65.04 ± 5.08 64.25 ± 4.52 63.86 ± 5.24 64.06 ± 4.70 64.12 ± 4.73
GATE 5.61 0.26 65.26 ± 3.75 65.72 ± 3.86 67.90 ± 5.72 66.08 ± 4.14 66.98 ± 4.61 66.39 ± 4.42
A-GCL 1.32 0.18 70.92 ± 4.28 71.12 ± 4.45 72.57 ± 4.65 73.02 ± 4.03 72.79 ± 4.51 72.08 ± 4.38
clinical assessments, specifically utilizing the Autism Diagnostic Obser-
vation Schedule (ADOS) for ABIDE and the Diagnostic and Statistical
Manual of Mental Disorders (DSM) criteria for ADHD-200. The ABIDE
I dataset consists of 1112 subjects: 539 ASD patients and 573 normal
controls (NC). A reliable pipeline, fMRIPrep (Esteban et al., 2019), was
used for preprocessing the fMRI images. Specifically, rs-fMRI reference
image estimation, head-motion correction, slice timing correction, and
susceptibility distortion correction are performed. For confounder re-
moval, framewise displacement, global signals, and mean tissue signals
are taken as the covariates and regressed out after registering the fMRI
volumes to the standard MNI152 space. In this work, 467 ASD and
520 NC are included after quality checking based on DVARS (Power
et al., 2012) and framewise displacement (Power, 2017). The ABIDE II
(521 ASD and 593 NC samples) and ADHD-200 (362 ADHD and 585
NC) datasets also underwent the same pre-processing procedure and
quality check. The number of subjects included in this study and their
demographics are given in Table 1.

Three brain atlases – AAL1, AAL3 (Rolls et al., 2020), and Shen268
(Shen et al., 2013) – were used to parcellate the brain into 116, 166,
and 268 regions, respectively. For each atlas, the mean time series
(BOLD signal) in each region is calculated by averaging the time series
of all the voxels. Then, the ALFF node features are calculated from the
mean time series and the full FC matrix is calculated using Pearson’s
correlation coefficient (PCC) between two mean time series. Based on
the 3 atlases, each subject produces 3 different graphs. We use the
graphs from AAL1 for validating the classification performance and the
graphs from AAL3 and Shen268 for validating the robustness of our
framework to atlas selection.

3.1.2. Competing methods
We compare the proposed A-GCL with 10 machine learning methods

as follows:
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Fig. 2. Transfer learning of A-GCL on two ABIDE datasets. The result is shown in
mean±std over 5-fold cross validation.

1. Traditional machine learning methods: FC and ALFFs are flat-
tened and concatenated into a vector, which is fed to an MLP or
SVM. To train the competing MLP, we set the learning rate to
0.01 and experimented with different numbers of nodes in the
hidden layers, including {1000, 100}, {1000, 500}, and {1000,
500, 100}. The best numerical result of MLP was reported after
evaluating these configurations. We use a linear SVM and set the
penalty coefficient from {0.1,0.5,1,5,10}.
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Fig. 3. An ablation study was conducted to investigate the impact of several factors on fMRI classification, including (a) atlases, (b) GNN encoders, and (c) edge-dropping strategies.
The results are presented as mean ± std over a 5-fold cross validation.
2. Standard GNNs: vanilla GCN (v-GCN) (Kipf and Welling, 2016),
GraphSage (Hamilton et al., 2017), graph isomorphism network
(GIN) (Xu et al., 2018). We have included all the code implemen-
tation of the aforementioned GNN baselines in our released code.
For the GNN models, we experiment with different learning
rates including {0.0001, 0.0005, 0.001, 0.01} and vary the batch
size from {8, 16, 32, 64}. We report the best results for each
competing method.

3. Code-released works for fMRI analysis:

• HI-GCN (Jiang et al., 2020) (https://github.com/haojia
ng1/hi-GCN). Adam is set as the optimizer with 0.001
as the learning rate. We search the learning rate from
{0.0001, 0.0005, 0.001, 0.01}. The batch size is chosen
from {8,16,32,64}. All the other hyper-parameters follow
the original implementation of HI-GCN.

• AL-NEGAT (Chen et al., 2022) (https://github.com/XiJia
ngLabUESTC). We replace the T1 intensity of AL-HEGAT
with the ALFF node features that we use. We tried the num-
ber of GNN layers from 2 to 4, 𝜖 in AL-NEGAT from {0.001,
0.005, 0.01, 0.02}. All the remaining hyper-parameters are
kept unchanged.

• BrainGNN (Li et al., 2021) (https://github.com/xxlya/Br
ainGNN_Pytorch). We have tried two implementations of
BrainGNN, the original implementation and the one with
the node features replaced by our calculated ALFFs. We
observe that the original BrainGNN failed to obtain satis-
factory performance on the ABIDE datasets. Thus we report
the results of the version with the node features replaced.
We set all the remaining hyper-parameters as the original
implementation.

• DGCN (Zhao et al., 2022) (https://github.com/zhangyubr
ain/DGCN). We search the learning rate in {0.001, 0.005,
0.01} as the original implementation suggests a learning
rate of 0.01 on ADHD. The number of graph convolutional
layers varies from 2 to 6. The remaining hyper-parameters
are set as the original implementation.

• GATE (Peng et al., 2022) (https://github.com/LarryUESTC
/GATE). As GATE provides the optimal combination of sev-
eral hyper-parameters on the ABIDE dataset, we also take
it as a reference on ADHD-200 and search the window size
in {20, 30, 50, 70}, and the step size in {10,15,20,25,30}
7

3.1.3. Evaluation strategy
The performance of the A-GCL framework is evaluated by five met-

rics: accuracy, sensitivity, specificity, F1-score, and AUC. An average of
these 5 metrics is also reported. To avoid the bias induced by a single
split of the dataset, 5-fold cross-validation was employed.

3.2. Classification performance

The classification results on all the datasets are shown in Table 2.
We can see that our proposed A-GCL achieves the highest mean ac-
curacy (80.65%, 79.88%, 70.92%) on the three datasets by using the
AAL1 atlas, which is about 5%–7% higher than the other SOTA meth-
ods. Two machine learning methods achieve the worst performance and
GNN-based methods share similar performance in ASD or ADHD classi-
fication. It is noted that although GATE uses basic contrastive learning,
it still achieves the second best performance among all the methods,
demonstrating that contrastive learning is beneficial to the performance
of fMRI classification. Another highlight is that our comparison results
are collected from 5-fold cross validation in contrast to the previous
works (Cao et al., 2021; Chen et al., 2022; Eslami et al., 2019; Heinsfeld
et al., 2018; Yao et al., 2019; Parisot, 2018; Kazi et al., 2019; Kam et al.,
2017) that only report the accuracy of a single split of the dataset.

3.2.1. Transfer learning for ABIDE datasets
To further investigate the generalizability of A-GCL, we perform

transfer learning on the ABIDE datasets: train the model on ABIDE I
and use the trained model directly (or after fine tuning) on ABIDE II,
and vice versa. As shown in Fig. 2, a simple application using A-GCL
trained on ABIDE I is not effective enough for ABIDE II. The accuracy
declines by about 10% when compared with the accuracy derived from
A-GCL trained from scratch on ABIDE II. However, fine tuning based
on the previously trained parameters yields comparable performance
to the GNN-based models in Table 2. In addition, when the model is
trained on ABIDE II and applied to ABIDE I, a similar phenomenon is
seen.

3.3. Ablation studies

3.3.1. Influence of different atlases on the three datasets
To investigate the robustness of A-GCL to atlas selection, we use

three different atlases – AAL1, AAL3, and Shen268 – to construct graphs
with different numbers of nodes. The classification results are reported
in Fig. 3(a).
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Fig. 4. Ablation study on how ALFF and FC influence the fMRI classification. The result is shown in mean±std over 5-fold cross validation.
Fig. 5. Ablation study on whether the embedding dimension will influence the
classification performance. The vertical lines denote the standard deviation. The result
is calculated from 5-fold cross validation.

As we previously stated, we aim to reduce the redundancy of
information between patients and the NC group through A-GCL. The
performance achieved using the Shen268 atlas is not as good as that
of the two AAL atlases, suggesting that more nodes in the graph can
be detrimental to the performance. However, in the ASD classification
task, the performance improves slightly on ABIDE I but deteriorates
slightly on ABIDE II as the number of nodes increases from 116 (AAL1)
to 166 (AAL3). In general, the performance achieved by the AAL
atlases surpasses that of the Shen268 atlas across the three datasets,
suggesting that overly elaborate brain atlases may not be ideal in fMRI
classification tasks.
8

3.3.2. Effectiveness of edge weights and node features
We investigate the effectiveness of the edge weights and node

features (ALFF) on the AAL1 atlas using four GNN-based models. To
evaluate the effectiveness of the edge weights derived from the PCC
calculation, we replace all elements of the FC matrix with 1, thus
creating a version without edge weights. As shown in Fig. 4, compared
to the version without edge weights, the version with edge weights
improves the classification performance in all the GNNs, demonstrating
that the edge weights do increase the accuracy.

As for the importance of node features, we replace the ALFF fea-
tures with a vector of all 1’s and consider this as a version without
node features. The accuracy of the GNN-based methods without node
features is also shown in Fig. 4. We can see that with the ALFF features
included, the performance increases by 2% to 3% in all the methods
on ABIDE I and ABIDE II. It is observed that the methods with only
ALFF and without the FC matrix could achieve moderate results in
ASD classification, but lead to much worse results when it comes to
ADHD classification. Nevertheless, it is obvious that both ALFF and FC
contribute to the highest score of accuracy and AUC. This phenomenon
could be due to that without ALFF, GNN-based methods are prone to
produce a worse representation during the message passing process.
Hence, the ALFF node features and PCC edge weights indeed benefit
the proposed A-GCL in improving the classification performance.

3.3.3. Influence of the GNN encoder
To study the influence of different GNN encoders on the classifica-

tion performance of A-GCL, we replace the GIN block with GCN and
GraphSage and evaluate the performance on the three datasets using
the AAL1 atlas. As shown in Fig. 3(b), three GNN encoders share similar
performance in terms of accuracy, specificity, sensitivity, and F1-score,
suggesting that A-GCL is robust to different GNN encoders.
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Fig. 6. Ablation study on how 𝜆1 and 𝜆2 influence the classification performance given the max–min (adversarial, abbreviated as A) loss function in Eq. (2) and the one-stage
(non-adversarial, NA) loss function in Eq. (3). For each paired 𝜆1 and 𝜆2, the classification performance in terms of mean accuracy and AUC is shown. When 𝜆2 = 0, it corresponds
to removing the memory bank.
Fig. 7. Illustration of the original FC matrix, the learned Bernoulli mask, and the
remaining FC matrix. Only the top 20% FCs are shown.

3.3.4. Influence of the graph augmentation strategy
The traditional contrastive learning approach commonly uses simple

data augmentation techniques such as random rotation or intensity
scaling in computer vision tasks (Chen et al., 2020). While in graph
learning, random edge-dropping is a common method for graph aug-
mentation (Feng et al., 2020). In the proposed A-GCL, we use a more
effective Bernoulli mask with adversarial training. To demonstrate the
effectiveness of the Bernoulli mask, we compare it with a random edge-
dropping strategy. The latter utilizes a random mask to drop edges
to generate positive samples, which are fed into the GNN encoder to
extract similar latent representations. The results, as shown in Fig. 3(c),
9

demonstrate that the Bernoulli mask generated by A-GCL is more
effective than random edge-dropping.

3.3.5. Influence of the embedding dimension
In our experiment, the embedding dimension of latent vectors is

set to 32. To investigate the robustness of A-GCL, we change the
embedding dimension from 8 to 128. As shown in Fig. 5, the accuracy
and AUC increase as the embedding dimension gets larger. Thus, the
representation capability of A-GCL generally improves as the embed-
ding dimension increases. Another phenomenon is that 32 may be the
optimal embedding dimension, as the performance tends to be stable
when the dimension changes from 32 to 128, while larger embedding
dimensions require more computational resources.

3.3.6. Influence of 𝜆1, 𝜆2, and the max–min loss function
To investigate the influence of hyper-parameter 𝜆1, 𝜆2 and the max–

min loss function, we conduct an ablation study to see how different
𝜆’s influence the model performance and whether the max–min (adver-
sarial) training loss function is effective. For comparison, we adopt the
following one-stage (non-adversarial) loss function to replace Eq. (2):

min
𝑧,𝜇

−𝐼(𝑧, 𝜇;) + 𝜆1𝑅(𝜇;) − 𝜆2𝐼(𝑧, 𝜇;,). (3)

AAL1 is selected as the atlas in this experiment. As shown in Fig. 6,
the best performance is achieved when 𝜆1 = 2 and 𝜆2 = 0.4 with the
max–min (adversarial) loss function.

As shown in Fig. 6, all adversarial versions achieve higher scores
than the non-adversarial ones, suggesting that the adversarial loss is
more effective than the non-adversarial loss for A-GCL. The better per-
formance from the adversarial training strategy demonstrates the effec-
tiveness of this strategy and the necessity of adversarial edge-dropping
during the self-supervised learning process.
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Fig. 8. Top 10 important brain regions associated with ASD/ADHD based on the three datasets.
3.4. Interpretation

3.4.1. Visualization of the learned Bernoulli mask
To interpret the edge dropping caused by the Bernoulli mask used

in A-GCL, we visualize the mean Bernoulli mask across instances in a
batch. This allows us to better understand the remaining edges that are
related to the changes induced by the disease.

In Fig. 7, we present the original FC matrices, the Bernoulli masks,
the edge-dropped FC matrices, and their corresponding brain FC maps,
based on AAL1. Only the top 20% connections of the brain FC maps
are shown, as the complete FC maps are too dense. Here, the Bernoulli
masks are binary (0 or 1) and are used to create the sparse FC matrix
via an element-wise multiplication. From Fig. 7, we could observe that
the remaining FC maps from the two ABIDE datasets are similar while
those from the ADHD-200 dataset have quite different connections.
We measure this similarity by calculating the correlation coefficient
of the edge-dropped FC matrices between two datasets. It turns out
that this correlation coefficient is 0.8328 between ABIDE I and ABIDE
II, in contrast to 0.1422/0.1758 between ABIDE I/II and ADHD. This
suggests that the disease-related FCs are stable across datasets and may
truly reflect the disease-associated changes.

3.4.2. Visualization of the important brain regions
We further analyze the important brain regions associated with

ASD or ADHD using A-GCL. The importance of a brain region is
quantified by the summed FCs of a node in the edge-dropped graph,
i.e., (𝐴◦𝐵◦𝐸)𝟏. For each dataset, we calculate this importance score for
each brain region, sort the scores, and pick the top 10 most important
regions. The results are visualized by BrainNet-Viewer (www.nitrc.org)
and shown in Fig. 8.

As shown in Fig. 8, Temporal_Mid_R, Precuneus_R, Occipital_Mid_R,
and Calcarine_R are the most important ROIs for ASD classification.
Note that these important ROIs from ABIDE I and ABIDE II have also
been reported by previous studies (Eilam-Stock et al., 2014). Addi-
tionally, the important regions for ADHD – Precentral_R, Thalamus_R,
and Frontal_Mid_R – have been found to be highly related to ADHD
diagnosis, as reported in several clinical studies (Seidman et al., 2005;
Konrad and Eickhoff, 2010).

4. Discussion and conclusion

4.1. Impact of atlas selection

Regarding brain atlas selection, two AAL atlases, AAL1 and AAL3,
achieve similar numerical performance for rs-fMRI classification. How-
ever, compared to the two AAL atlases, the Shen268 atlas results in
lower numerical performance. The possible reason is that the Shen268
atlas divides the brain into more granular regions, which leads to: (1)
10
fewer voxels are averaged, resulting in reduced noise suppression, (2)
more nodes exist in the graph, resulting in a larger parameter space
and a more difficult optimization problem. An interesting direction in
the future is to combine multiple atlases to boost the performance.

4.2. Transfer learning between the two ABIDE datasets

The fact that transfer learning between the two ABIDE datasets is
not as effective as training from scratch may seem counter-intuitive.
However, note that there is significant heterogeneity between the two
ABIDE datasets (Di Martino et al., 2017). They contain raw rs-fMRI
data acquired from different MR scanners in 17 sites. In addition, the
quality control measures applied to the data are not consistent between
these two datasets, resulting in significant differences between them.
Therefore, the parameters trained on one dataset may not be suitable
for the other, and direct transfer learning may not be appropriate in
this case.

4.3. Conclusion

In this paper, we propose A-GCL to diagnose neurodevelopmental
disorders such as ASD and ADHD using three rs-fMRI datasets: ABIDE
I, ABIDE II, and ADHD-200. A-GCL leverages ALFFs extracted from
BOLD signals to build the graph and extracts graph representations by
creating a sparsely connected graph as a positive sample in contrastive
learning. This enables A-GCL to better aggregate the neighborhood
node features in existing GNN-based models. To further enhance the
representation capability during the self-supervised process, we imple-
ment A-GCL with a dynamic memory bank. The proposed A-GCL is
trained by an adversarial strategy. Extensive experiment results demon-
strate that A-GCL outperforms other methods in terms of accuracy
and other metrics. Additionally, several ablation studies with different
atlases verify the stability and robustness of A-GCL, and explanatory
experiments provide the disease-associated brain regions, which may
benefit both its clinical application and further understanding of the
disease.
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